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HEAT AND MASS TRANSFER IN A LAMINAR 
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VARIABLE SUCTION OR INJECTION VELOCITY AND 

CONSTANT WALL TEMPERATURE 
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Max-Planck-Institut ffir Striimungsforsclumg, GBttingen 

(Received 1 June 1968) 

Abstra&-The velocity and thermal boundary layers over a porous flat plate withvariable suction or 
injection velocity (- x-3 and constant wall temperature, without restricting the scope of the Prandtl 
number, have been studied. In the first place, a sixth degree velocity profile has been used and the solution 
is obtained by the von Barman integral equation. A comparison between the calculated results and the 
exact solution of Schlichting and Bussmann has been made. Keeping the results of the comparison and the 
Reynolds analogy in view a sixth degree temperature profile is then considered and the solution is obtained 
by the heat-flux-equation. The cases of zero and asymptotic suction for velocity and thermal boundary 

layers are found as the limiting cases of the present study. 

NOMENCLATURE 

a, thermal diffusivity, = k/PC,,; 
ai, coefficient of vi in velocity 

profiles ; 

biv coefficient of qf in temperature 
profiles ; 

c, defined by equation (3.15) ; 

Cf, coefficient of skin friction ; 

CP specific heat at constant 
pressure ; 

D(M)> defined by equation (3.7); 

f(M,d defined by equation (3.8); 

H(A), defined by equations (5.17) and 
(5.18); 

H,(A, M, M,), defined by equation (5.10) ; 
k coefficient ofheat conductivity ; 

1;M,, VA 

length of the plate : 
defined by equation (5.8); 

M, 
%(X)6 suction parameter, = - * 

v ’ 

t Present address: Department of Mathematics, Univer- 
sity of Rajasthan, JAIPUR (INDIA). 

Mt9 
N&4 
PM, 4, 
pr, 
dM 4 
aiM 4 

Q(x), 
r(M, 4, 
r&W 4, 

T 
u, v, 

defined by equation (5.7); 
local Nusselt number ; 
defined by equation (6.9); 
Prandtl number, = ,uCJk ; 
defined by equation (6.8); 
Coefficient of M: in equation 
(6.1) and are defined by equa- 
tions (6.2) to (6.4) ; 
local heat flux ; 
defined by equation (6.18) ; 
coefficient of M: in equation 
(6.12); and are defined by 
equations (6.13) to (6.15) ; 
Reynolds number U oox/v ; 
defined by equation (6.19) : 
dimensionless temperature, 

= T- T, . 
T, - T,’ 

temperature; 
velocity components in x and 
y directions respectively ; 
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x, Y, 

ZIP 
z2, 

Greek symbols 

a(x), 

6, 

X(M), 
;I(O), 

Subscripts 
0, w, 
co. 

I, 
s, 

free stream velocity in x direc- 
tion ; 
prescribed normal velocity at 
the wall, D&C) > 0 injection, 
U&X) < 0 suction ; 
coordinates along and normal 
to the wall respectively ; 
defined by equation (6.7); 
defined by equation (6.17). 

heat-transfer coefficient, 

Q(x) 
= T, - T,' 

velocity boundary-layer thick- 
ness ; 
thermal boundary-layer thick- 
ness ; 
displacement thickness ; 
= 6,/6; 
momentum thickness ; 

= y/a; 
= v/h; 
dynamic viscosity ; 
kinematic viscosity, = p/p ; 
density ; 
shearing stress on the wall : 
defined by equation (6.5) ; 
defined by equation (5.13) (i = 
0 . 
1 ‘iii ike equation (3. lo)] ; 

= (e/a, = 0. 

conditions at the wall (y = 0); 
conditions at outer edge of 
boundary layer ; 
injection : 
suction. 

1. INTRODUCTION 

THE EXACT solution for the velocity boundary 
layer on a flat plate for an incompressible fluid 
was given by Blasius [l] and the corresponding 

exact solution for the thermal boundary layer 
and heat transfer for isothermal and adiabatic 
walls has been given by Polhausen [2]. The 
approximate solution for the same problem for 
thermal boundary layer has been studied by a 
number of authors such as Kroujiline [3], 
Eckert [4], Squire [5] and Dienemann [6]. 

A survey of literature on the laminar boundary 
layer for exact and approximate solutions has 
been made by Wuest [7] and Head [8]. The 
exact solution of the velocity boundary layer 
over a flat plate with variable suction or in- 
jection velocity (- x-#) was first obtained by 
Schlichting and Bussmann [9] and (indepen- 
dently) by Thwaites [lo] and Emmons and 
Leigh [ 111. The corresponding approximate 
solution for the case of suction has been recently 
investigated by Morduchow and Reyle [12]. 
They have found that a sixth degree velocity 
profile gives a good agreement with the calcu- 
lated results of Thwaites [lo] and Emmons and 
Leigh [l 11. Number ofattempts have been made, 
a detailed bibliography is given by Schlichting 
[13], by various workers such as Yuan [14], 
Morduchow [15], Hartnett and Eckert [16] 
and Koh and Hartnett [17] for the study of heat 
transfer for compressible and incompressible 
fluids for isothermal and adiabatic walls with 
constant or variable suction or injection velocity. 
In all these studies, for the sake of simplification, 
either the Prandtl number has been taken as 
unity, or the calculations are performed with 
Prandtl number 0.72 the Prandtl number for air. 

In the present paper the problem of velocity 
and thermal boundary layers over a flat plate 
with variable suction or injection velocity 
((v x- *) and constant wall temperature has been 
studied, without restricting the scope of the 
Prandtl number. A sixth degree velocity profile 
has been used and first the expressions for velo- 
city profile and the characteristics boundary 
layer parameters have been derived by the use 
of the von Karmdn integral equation. It is being 
found that the method gives a good agreement 
for the case of suction (M c 0) Blasius profile 
(M = 0) and for injection (0 < M < 3) with the 
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exact solution of Schlichting and Bussmann, 
but the results differ widely for A4 > 3, where 
M( = [V,(X) 6(x)]/v) is the suction parameter. 
Keeping this thing and Reynolds analogy in 
view a sixth degree temperature profile is then 
considered with appropriate boundary con- 
ditions and the heat flux equation is employed 
to determine the relation between Prandtl 
number Pr, the ratio of the thickness of the 
temperature and velocity boundary layers 
d(= 6,(x)/6(x)) and the suction parameter M. 
The case of zero and asymptotic suction are 
found as the limiting cases of the present study. 
The case of zero suction gives a good agreement 
with the exact solution of Pohlhausen and the 
case of asymptotic suction gives an interesting 
relation between Pr and A, i.e. APr = 1. 

The assumptions made in the present study 
are: (a) The potential flow velocity U, is small 
as regard the velocity of sound, so that the flow 
is incompressible (Mach number Ma + 0), 
(b) the coefficient of viscosity ,u and the coefficient 
of conductivity k are small for the validity of the 
boundary layer assumptions, (c)the temperature 
difference T, - T, between the wall and the 
potential flow is small as regard T,, so that the 
values of ,u and k may be taken as constant 
(i.e. independent of temperature field). Also the 
Prandtl number Pr = pC$k is,constant, (d) 
frictional heat and the effect of compressibility 
are negligible. 

2. BASIC EQUATIONS 

We consider here the case of a uniform stream 
U,(const) passing over a flat plate with a vari- 
able suction or injection velocity u,-,(x) normal to 
the surface of the plate. We shall assume that the 
x-axis is placed in the plane of the plate in the 
direction of the flow, the y-axis at right angle to 
it and to the flow, with the origin at the leading 
edge. The plate is maintained at a constant 
temperature T, and T, being the constant 
temperature of the undisturbed external flow. 
The boundary layer equations for the above 
case are : 

continuity : 

au+!!=,, 
ax ay 

(2.1) 

momentum : 

(2.2) 

energy : 

i?T aT a2T 
uz+vg=ady2 (2.3) 

where 

a = --$ (thermal dilfusivity). 
P 

Since the Mach number has been assumed to be 
small (i.e. incompressible flow) the dissipation 
term is omitted from the energy equation. 

The boundary conditions are 

y=o: u = 0, 

y=cc: u=u_,, 
u = t&4> ;I : (2*4) 

cc 7 

uO(x) > 0 injection ; uO(x) < 0 suction. 

The velocity field is independent of the tempera- 
ture field so that the two flow equations (2.1,2.2) 
can be solved first and the result can be employed 
to evaluate the temperature field. 

3. APPROXIMATE SOLUTION FOR THE 
VELOCITY BOUNDARY LAYER 

Integrating equation (2.2) between the limits 
y = 0 and y = 6 and making use of (2.1), the 
well known momentum integral equation for 
suction or injection in this case is [13] 

7w 
- = u”, g - vo(x) u,, (3.1) 
P 

where 

(shearing stress on the wall) 

/au\ 
(3.2) 
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and 

(momentum thickness) 

d 

(3.3) 
n 

We investigate ihe problem by Pohlhausen’s 
sixth degree velocity profile with the following 
boundary conditions 

Aty=O: u=O, 

’ G$), = uO($); 

6$), = uO& 

Aty=6: u= U,, 

@)a= ($)a=($)&=o. j 

Let 

-K = ii a,#, 
IJ, 

O<q<l, (3.5) 

for q > 1, u = U,, 

where 

The coefficients in the right-hand side of the 
expression (3.5) with the help of the boundary 
conditions (3.4) are obtained as [NJ, 

a,(M) = 0, 

120 
a,(M) = - 

D(M)’ 

6OM 
a,(M) = Do 

20MZ 
a3041 = DtMl> 

a,(M) = 
- 15(20 + 12M + 3M’) 

D(M) ’ 

a,(M) = 
12(30 + 16M + 3M’) 

D(M) ’ 

a,(M) = 
- lO(12 + 6M + M’) 

D(M) ’ 

where 

M = u”(x\‘x) (suction parameter), (3.6) 

and 

Hence 

D(M) = 60 + 12M + M2. (3.7) 

&=f(M,q)= 5 u,(M)q'; O<q<l 
03 i=O 

and (3.8) 

u=u,; rl>l J 

From (3.2) and (3.8), we have 

(3.9) 

and from (3.3) and (3.8) 

;=;aM,= lOOl;2(M) [39400 + 16520M 

+ 2966M2 + 250M3 + 10M4] (3.10) 

Let M = const. (i.e. uo(x) is so adjusted so as to 
give constant M). 

Substituting (3.9) and (3.10) in (3.1), we get 

sg = (dW + M)v 
dx LJ, X(M) 

(3.11) 

Integrating (3.11) with the condition that at 
x = 0,6 = 0, we get 

(32 = wmf) + w x, 

u, x0W 

(3.12) 

or 

vi(x) = M2xW vu,. 
2(adM) + W x 

(3.13) 

Since M is constant, this shows that uo(x) N x-*. 
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Schlichting and Bussmann (9) have taken 

C 
llo(x) = - _z 

VU J( > -x” ) (3.14) 

therefore, comparing (3.13) and (3.14), we have 

C = - MJ[algy)M] (3.15) 

when M is positive, C < 0 (Injection) 
and 

when M is negative, C > 0 (Suction). 

4. THE CHARACTERISTIC BOUNDARY-LAYER 
PARAMETERS 

Displacement thickness 

a*=/[-+-)dy=+-f(M,l))dn, 

0 0 

therefore 

(dimensionless displacement thickness) 

From (3.10) 

(dimensionless momentum thickness) 

= kW){dW + Ml]‘, (4.2) 

From (4.1) and (4.2) 

(shape factor) 

and finally for the coefficient of skin friction 
C,, we find that 

5. APPROXIMATE SOLUTION FOR THE 
THERMAL BOUNDARY LAYER 

Let 6, be the thickness of the thermal boundary 
layer. Integrating (2.3) between the limits y = 0 
and y = 6,, we get [19, p. 2681 

a t?T =- 
u,Kv - 5 0 y=o’ (5.1) 

Introducing the dimensionless temperature t, 

T- T, 

’ = T, - T, 

equation (5.1) reduces to 

at 

(5.2) 
0 

For the temperature distribution we consider 
the following polynomial in Q = (y/&) : 

t = 1 - E bi tlf, 0 ~ rlt ~ 1 (5.3) 
i=O 

where the coefficients b. to b, are given by the 
boundary conditions 

Q=o: t=l, 

a* 1001 (120 + 32M + 3MZ)(60 + 12M + M’) -_= 8 70 (39400 + 16520 M + 2966 M2 + 250 M3 + 10 M”)’ (4.3) 

from (3.9) and (4.1) 

(dimensionless shearing stress 
on the wall) 

z,6* 120 (120 + 32 M + 3 M2) 

p&,=7 (60+12M+M2)2’ 

(4.4) (&$lo= v0 4 (j$), 
D 



178 J. L. BANSAL 

and and 

A 2 1: H&4, M, M,) = @,(M,) - ; Q,(M) 

The form of the temperature distribution is so 
selected as to ensure identical velocity and 
temperature distribution for 6, = 6, as required 
by the Reynolds analogy for a flat plate at 
Pr= 1. 

Let 

/j(x) = 33 
W’ V.5) 

the ratio of the thickness of the tem~rature and 
velocity boundary layers. 

The coefficients b, to bn, obtained by the 
boundary ~nditions~5.4~, are given by 

bi = aXMt). 

where 

(5.6) 

Hence 

c = 4Mn St) = 1 - j* aXM1) Irf. 

Substitut~g (3.8) and (5.8) in (5.2), we get 

& Pt m4 M, 
vot4 WI - r = 

co 

(5.7) 

(5.8) 

(5.9) 

where 

&(A, M, MJ = ; f (M, rl) 4Mn q,) drt,.? (5.10) 

On integrating, we’get 

A G 1: H&i, M, Mu) 

= _tl a&f) WW A’, (5.11) 

t H, should be a function of A, M and M, as 

Y Y4 q=-=--_=q& 
6 St6 

where 

@o(M)= &(120+32M+3M2), 

@1(M)- 28D(M) 
--+KW30M+3M2), 

1 
@‘(M)= 126D(M) 

(150+48M+5M2), 

@3(M)= 168D(M) 
’ (84+28M+3M2), 

1 
@4(M)= 231OD(M) 

(560+192M+21M2) 

Q,(M) = ,3861,(M)(180+63M+7M2), 

@e(M)= 3003;(M)(225 + 80M + 9 M2). 

Now, integrating equation (5.9), we have 

Sf H: (A, M, M,) 

*24l 
= 

J 
+(MJ + M,]H,(d,M,M,)dx. 

co 
0 

(5.12) 

,(5.13) 

(5.14) 

Since H,(d,M, M,) is a known function, the 
preceding equation can be used to determine 
A(x). The calculation is best performed by 
successive approximations. Since d(x) is a 
slowly varying function, therefore to a first 
approximation we take A = const. 

Since M and +I are constants, therefore for a 
given fluid (i.e. for a given Prandtl number) M, 
is also constant. 

Hence, equation (5.14) with the help of (3.12) 
gives 
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AH&t M, Mt) very large values of A), substituting (5.18) 

_ MtiM) a,(%) + M, 
in (5.16) and retaining only first term, we get 

M, a,(M) + M . 
(5.15) 

A = 0.618 Pr-+ (Pr + 0). (5.20) 

Equation (5.15) shows that A is a function of M (iii) For very large Prandtl numbers (i.e. for 

and Pr and is therefore independent of x. Thus very small values of A), substituting (5.17) 

the first approximation is the exact solution of in (5.16) and retaining only first term, we get 

the equation (5.14), and no further approxima- A = 0.972 Pr-+ 
tion is required. 

(Pr -+ co). 

Limiting cases 
Case II. When a,(M) + M + 0 (i.e. 

Case I. When M + 0 (i.e. in the absence of 
of asymptotic suction profile), we get 

suction or injection), we have from (5.15) M + - 464437. 

A*H(A 0 O)=@ t 7 9 Pr’ 

or 

A2 H(A) = &j$. 

where 

A < l:H(A) &A -iA4 

Case of This value of M is the same as in 
homogeneous suction [18] and u/U, will be 
exactly the same function of Cpy,(x)y/v] as in 

(5.16) Case of homogeneous suction which is already 
pointed out by Morduchow and Reyle [ 121 and 
is in exact agreement with the implications of 
the asymptotic suction profile [S-l 11. 

As A and X(M) are finite, relation (5.15) imply 
that in this case a,(Mt) + M, should also tend 
to zero, this gives 

++A5 -LA6, 
2002 

(5.17) 

(5.21) 

the case 

(5.22) 

and 

A&l:H(A)=;-;;+-&?w?- 

Equation (5.22) can also be obtained, inde- 
pendently from the basic equations (2.2) and 
(2.3) by taking u and T, for the asymptotic suc- 
tion profile, independent of x. 

11 51 

+1746-2002A7. 
-- (5.18) 

6. SOLUTIONS OF EQUATION (5.15) FOR 

(i) For moderate values of the Prandtl number 
DIFFERENT VALUES OF THE PRANDTL NUMBER 

the expression 
When A < 1, substituting the values of 

H,(A,M,M,) ;1(M), a,(&) and a,(M) from 
A = Pr-+ (5.19) (5.11), (3.10) and (3.6) respectively in (5.15) and 

constitute a good approximation to the 
after simplification, we get 

solution of equation (5.16). 
(ii) For very small Prandtl numbers (i.e. for i qi(M, A) Mf = - 120, (6.1) 

i=l 

ql(~, A) = 60 - Q(M) a,(~) 42 + g a,(~) A~ + f a,(~) 44 

8 10 
+ SS~.dM)A5 + +M) A6 + 1OO1 (6.2) 
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+ &a,(M)d + &a,(M)LP + &45(j%47 , 
I 

(6.3) 

qa(M, A) = 1 - G,(M) a,(M) A2 + &a,(M) A3 + &a,(M) A4 

+&yz,(M)d) +&(M)A6 + $p6(M)A7 ? 1 (6.4) 

such that 

Q(M) = a,(M) + M 

MX(M) ’ 
(6.5) 

Equation (6.1) can be reduced to 

2: + 3p(M, A)& + 2q(M, A) = 0, (6.6) 

where 

2, = M, + 
qz(M, A) 

3q,(M, A) 
(6.7) 

values of M. It is found that q2 + p3 ispositive 
in all such cases. Therefore, there exists only one 
real value of Z, (Cardon’s solution) which is 
given by 

z, = [- q + (q2 + p3)‘]* 

+ [-q - (q2 + p3)*]+. (6.10) 

Therefore, from (6.7) the Prandtl number can be 
obtained as a function of M and A 
i.e. 

&(M,A)=+$-$+z, (6.8) A < 1: Pr = -$-A q2(M’ ‘) . (6.11) 1 3 43@4, A) 

and 

3p(M,A) = 3q,q3 - 4: 

%I; . 
(6.9) 

The values of q2 + p3 are tabulated for different 
values of A < 1 and for positive and negative 

When A 2 1, equation (5.15) reduces to 

i$1 rXM, A) Mf = - 120, (6.12) 

where 

r,(M, A) = 60 + Q(M) 
[ 
60 Q,,(M) - y A - 120 Q,(M) A-’ 

+ 300@,(M) A-4 - 360@,(M) A-5 + 120@6(M)A-6 , 
I 

(6.13) 

r,(M, A) = 12 + G(M) Q,,(M) - y A - 60 Q2(M) A -2 

+ 180a4(M) A-4 - 192 c@,(M) A-5 + 6o@,(M)A-+ (6.14) 

and 

r,(M, A) = 1 + G(M) - ; A - 20 G3(M) A- 3 

+ 45 @JM) A-4 - 36@,(M)A-5 + lo@,(M)A+ 1 . (6.15) 
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Proceeding as in the case of A < 1, from equa- y 
tion (6.12), we get 
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A > 1: P,=--& 
[ 
Z,- r2(M’A) 1 3r,W,A) ’ (6.16) 

where 

z, = [ - I + (22 + s3)*]* 

+ [- r - (r2 + s3)f]* > (6.17) 

: 
WM4 = s -s+T, (6.18) 

0 X 

and 

3 3 

h&O Suction 

3 s(h4, A) = 3 ‘l;;; *‘. (6.19) 
FIG. 1. Velocity and thermal boundary layers on a flat plate 
with variable suction (_ X-*) and constant wall temperature 

3 Tw (Subscript S denotes suction). 

7. HEAT TRANSFER Thermal bmday layers 

If Q(x) denotes the quantity of heat exchanged 
between the plate and the fluid per unit area and 
time at a point x, then [13, p. 2621 Y 

Q(x) = a(x) x (T, - T,) = -k $ 
0 

= . (7.1) 
Y 0 

Introducing dimensionless quantities, we obtain 
a local dimensionless coefficient of heat transfer 0 

which is known as the Nusselt number as &#=$!J$@* x 

441 Nu(x) = 7 = - (7.2) 
I,,,. ,,..._ _~ 

. 
M’O Tqectlon 

FIG. 2. Velocity and thermal boundary layers on a flat plate 
with variable injection (-x-t) and constant wall tempera- 

ture ‘&. (Subscript I denotes injection). 

x - Resentmethod 

FIG. 3. Velocity profiles for various values of the parameter 
c = -MJ[2X(M)/C(a,W) + WI. 
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From (5.3) and (7.2), we obtain 

I 1 
-3 -2 -I 0 I 2 3 4 5 

Injection suction C 

FIG. 4. The dimensionless displacement thickness 

~e,W&l th e momentan thickness OJ[U,/ux] and 
factor 6*/O against the parameter 

C = -M,/[2X(M)/(a,(M) + M)] (M is the suction para- 
meter). 

I .o- 

0.9- 

i I I I I I I J 
-I 0 I 2 3 4 5 6 

Injection Suction C 

FIG. 5. Dimensionless shearing stress T,G*/p!J, or 
)‘I&/[vx/U~] against the parameter 
C = -M,/[2X(M)/(a,(M) + M)] (M is the suction para- 

meter). 

(7.3) 

where 

Re, = u: 
V 

(Reynolds number) 

when A4 + 0, (7.3) gives 

W4 0.330 
J(Re3=?- 

(7.4) 

Relation (7.4), for different ranges of the Prandtl 
number, with the help of (5.20), (5.19) and (5.21), 
can be written as 

Nu(x) = O-534 ,/(Pr) ,/(Re& (Pr + 0) 

N&x) = 0.330 3,/(Pr) ,/(Re_J (for moderate 
values of the 
Prandtl number) 

Nu(x) = 0.339 3,/(Pr) ,/(Re,) (Pr --, co). 

The corresponding values of the Nusselt number 
from the exact solutions are [13, p. 2851 

Nu(x) = 0.564 J(Pr) ,/(Re,) (Pr + 0) 

N&x) = 0.332 J(Pr),/(Re,) (O-6 < Pr < 10) 

Nu(x) = 0.339 J(Pr) ,/(Re,) (Pr + co). 

The method of calculating the thermal boundary 
layer and in particular the local Nusselt num- 
ber is now as follows : 

(a) For negative and positive values of the 
suction parameter A4 and for small and 
large values of A, the relation between 
Prandtl number and A can be obtained from 
Figs. 6 and 7 which are based on equations 
(6.11) and (6.16), 

(b) For a given Prandtl number and for a given 
value of the suction parameter M the value 
of A = S&x)/G(x) can be obtained either 
from Fig. 6 or from Fig. 7 as the case may be, 

(c) For a given value of the suction parameter 
M, the thickness 6(x) of the velocity boundary 
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H) 
Injection case of L6ro suctiiwhjeckl 

F$Mmsds sdutian) 

5$GqJ= 

<o . . 
-q>+__ ------ 

F ---_ 
-.- 5 -- --- 
AR=1 , 

_- -z - - C 
n---1 ) Asymptotic w&ion 

FIG. 6. Prandtl number against the parameter A (the ratio of the thickness of 
the temperature and velocity boundary layers) for various values of M 

(suction parameter). M < 0 suction, M > 0 injection. 

0.6 

0.2 Gxeofz~ ‘. 0 SUCTIO” or l”pclloll 
s solution) 

1 n- Pr=l 
I I I I I I I 

IO 1.1 I,2 I.3 I.4 I5 I6 I.7 I.6 I.9 0 

Foci. 7. Prandtl number against the parameter A (the ratio of the thickness of 
the temperature and velocity boundary layers) for various values of M 

(suction parameter). A4 < 0 suction, M > 0 injection. 

layer at a point x can be obtained from 
equation (3.12), 

(d) Steps (b) and (c) give 6,(x); finally, the local 
Nusselt number follows from equation (7.3). 

8. CONCLUSION 

In Figs. 3-5 the velocity profiles and the 
characteristic boundary layer parameters are 
compared with those of Schlichting and Buss- 
mann. It is being found that for the case of 
suction (A4 < 0), Blasius profile (A4 = 0) and 
for injection (0 < A4 f 3) the results are in good 
agreement with the exact solution of Schlichting 
and Bussmann, but for A4 > 3 the sixth degree 
polynomial does not give a fair agreement and 
the results differ widely. 

Figures 6 and 7 give the relation between large 
and small Prandtl number Pr and A, for different 
values of the suction parameter M, respectively. 
It is noted that for Pr > 1, the effect of suction 
is to decrease A while injection increases it. The 
opposite phenomenon happens for Pr < 1. For 
Pr = 1, we have A = 1 (Reynolds analogy). The 
study leads to the fact that suction decreases the 
velocity as well as thermal boundary layers while 
injection increases them. For two fluids Pr = 
0.72 (air) and Pr = 7-O (water) the thermal and 
velocity boundary layers for suction (M = - 1) 
and injection (A4 = 1) are shown in Figs. 1 and 
2 respectively. 

In Figs. 8 and 9 the local Nusselt number is 
plotted against the small and large values of the 
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FIG. 8. Local Nusselt number Nu(x) plotted against the Prandtl number Pr for positive 
and negative values of the suction parameter M. 

5 

FIG. 9. Local Nusselt number M(x) plotted against the Prandtl number Pr for positive ad 
negative values of the suction parameter M. 

Prandtl number, for various values of the para- This cooling process is known as transpiration 
meter M. In case of injection, the reduction in or sweat cooling. 
Nusselt number shows that a very effective For the case of asymptotic suction we fmd 
reduction of the wall surface temperature can be that d = l/Pr. In the case of impermeable wall 
obtained by injecting a small amount of fluid. the expressions for the Nusselt number for 
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various ranges of the Prandtl number gives a 
very good agreement with the known exact 
solutions. 

It is expected that the present study will give a 
fair idea of the nature of the thermal boundary 
layer and heat transfer on a porous flat plate 
with suction or injection (- x-*) for a wide 
range of Prandtl numbers when the fluid is 
incompressible and the frictional heat is 
neglected. 
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R&urn&-Les couches limites de vitesse et de temperature sur une plaque plane poreuse avec une vitesse 
d’aspiration ou d’injection variable (,x-f) et une temperature parietale constant ont et6 etudi6es sans 
restreiudre la gamme de variation du nombre de Prandtl. Tout d’abord, on a employ6 un protil de vitesse 
du sixieme degrt et la solution a et.6 obtenue par l’bquation integrale de Von K&n&t. On a compare les 
rbultats calculb et la solution exacte de Schlichting et Bussmann. En tenant compte des rbultats de la 
comparaison et de l’analogie de Reynolds, on considbre alors un profii de temperature du sixieme degrt 
et l’on obtient la solution par l%quation du flux de chaleur. Les cas de l’aspiration nulle et asymptotique 
pour des couches limites de vitesse et de temperature sont obtenus comme cas limites de l’etude actuelle. 

Zpspmmpaf assung-Die Geschwindigkkts- und Temperaturgrenxschichten an einter poriisen ebenen 
Platte mit veriinderlicher Absauge- oder Ausblasgeschwindigkeit (- x-*) und konstanter Wandtemperatur 
sind ohne BeschrBnkung des Bereichs der Prandtlzahl untersucht worden. Ein Geschwindigkeitsprofiil 
se&ten Grades ist zuniichst benutzt worden und die Losung wurde durch die von Karmansche Integral- 
bedingung gewonnen. Die berechneten Ergebnisse sind mit der exakten Losung von Schlichting und 
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Bussmann verglichen worden. Unter Beriicksichtigung der Ergebnisse des Vergleichs und der Reynolds- 
Analogie wurde dann ein Temperaturprofil sechsten Grades betrachtet und eine Liisung mit Hilfe der 
Wlrmeflussgleichung erhalten. Als GrenztWle der vorliegenden Untersuchung wurden die FLlle versch- 
windender und homogener Absaugung Eir die Geschwindigkeits- und Temperaturgrenzschichten gefunden. 

AEHOT~~-BCCnenOBa~~Cb CKOpOCTHbIe II TeMnepaTypHbIe IIOJIR B IlOrpaHHYHOM CJIOe 

IIJIOCKOt IlJlaCTIlHbI IlpH pa3JlHWSOt CKOpOCTH OTCOCa H BAyBa (-ii+) qepe3 IIOpKCTyIO 

MaoTepMmecKym CTeHKy 6ea OrpaHaveHkiR JQtanaaoHa WICJIa npaEi$JTJIFI. B OCHOBy npn6nn- 
~eHHOrOpe~eHIl~~OMHTerpa~bHOMyMeTO~y~apMaHa~O~O~eHaa~~p0K~KMa~HR~po~K~K 

C~0p0~TK~apa6o~ol~ecTolttcTe~eK~.~poKe~eHocpaBKeKKepe3y~bTaToBpac~eTaCT0~H~M 

pemeKKeM JJhixTmra H BychfaHa. t'iClIOJlb3OBaHO npa6nmeKKe UIeCTOt CTeIIeHH AJIFI 

TeMIIepaTypHOrO lIpO&inH COBMeCTHO C aHaJlOrKeti PeiiHOnbACa R Ha 3TOti OCHOBe IlOJIyqeHa 

~OpMyJla~JIfiTeIIJlOBbIXIlOTOKOB.CJIyYaH HyJleBOtEI aCMMIITOTE14eCKOtiCKOpOCTIlOTCOCa~JIH 

TeIIJIOBbIX IIOrpaHH'lHbIX CJIOeB, PaCCMOTpeHHbIe B AaHHOM MCCJIe~0BaHHEi, RBJIKIOTCII ripe- 


